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Abstract
In a recent study we have reported a new type of trial wavefunction symmetric under the
exchange of particles, which is able to describe a supersolid phase. In this work, we use the
diffusion Monte Carlo method and this model wavefunction to study the properties of solid 4He
in two- and quasi-two-dimensional geometries. In the purely two-dimensional (2D) case, we
obtain results for the total ground-state energy and freezing and melting densities which are in
good agreement with previous exact Monte Carlo calculations performed with a slightly
different interatomic potential model. We calculate the value of the zero-temperature superfluid
fraction ρs/ρ of 2D solid 4He and find that it is negligible in all the considered cases, similarly
to what is obtained in the perfect (free of defects) three-dimensional crystal using the same
computational approach. Interestingly, by allowing the atoms to move locally in the direction
perpendicular to the plane where they are confined to zero-point oscillations (quasi-2D crystal),
we observe the emergence of a finite superfluid density that coexists with the periodicity of the
system.

1. Introduction

Quantum crystals are characterized by unusually large atomic
kinetic energy, Lindemann ratio and non-negligible anhar-
monicity even at low temperatures and high pressures [1, 2].
The counterintuitive possibility of simultaneous solid order and
superfluidity in solid 4He, the most representative of quantum
crystals, has long attracted the interest of both theoreticians and
experimentalists. After several unfruitful experiments to detect
superfluid signals in solid 4He, Kim and Chan reported few
years ago the first evidence of non-classical rotational inertia
(NCRI) both in confined environment [3] and in bulk [4]. From
then on, several other experimental groups (up to five, so far)
have observed NCRI using different samples containing small
or ultra-small 3He concentrations, in a simple crystal or in a
polycrystal, and using several annealing schemes [5]. There is
almost overall agreement of all the data concerning the onset
temperature T0 = 75–150 mK at which the superfluid fraction
becomes zero, the lowest value corresponding to ultra-pure
samples (only 1 ppb 3He). However, the experimental values
of the superfluid density reported so far change by more than

one order of magnitude (ρs/ρ � 0.03–0.5%) depending on
the purity, annealing conditions in which the crystal is grown,
etc. Such high dispersion suggests that the superfluid signal
observed in solid 4He is probably due to the presence of some
defects in the crystal, which could be of a different nature:
dislocations, vacancies or grain boundaries [6].

On the theoretical side, path integral Monte Carlo (PIMC)
calculations performed at low temperatures (down to 0.1 K)
show that perfect commensurate 4He crystal possesses neither
finite superfluid fraction [7] nor condensate fraction [8]. Only
non-zero ρs/ρ has been estimated in the presence of disorder
introduced in the form of a glassy phase [9] and of defects
like dislocation lines [10] and vacancies [11]. Moreover,
our recent calculations based on the diffusion Monte Carlo
(DMC) method show negligible superfluid fraction of perfect
bulk solid 4He at strictly zero temperature [11]. These DMC
calculations have been performed using a new model of a trial
wavefunction which allows simultaneously for spatial solid
order and Bose–Einstein symmetry and with the benefit of a
simple use for importance sampling. It has been shown that
the energetic and structural properties of solid 4He can be
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reproduced very accurately with this trial wavefunction model
when it is used for importance sampling in the diffusion Monte
Carlo method.

In this work, we extend our study of solid helium to
purely two- and quasi-two-dimensional geometries relying
upon similar computational approaches to the ones used
in [11, 12]. The motivation for carrying out the present
study is four-fold. First, relevance of quantum fluctuations
is generally enhanced in systems of reduced dimensionality
hence possible signatures of superfluidity may be detected
more easily. Second, from a computational point of view
low-dimensional systems are reasonably affordable so one can
explore wide thermodynamic ranges on them. Third, in a
recent study [12] of strictly two-dimensional solid H2 we have
shown that when the density of particles is reduced down to
practically the spinodal point, a finite superfluid fraction is
observed to appear in the film; in this work we carry out
similar investigations on solid 4He (that is in the metastable
regime) in order to unravel possible connections between the
density of particles and the superfluid fraction. And fourth,
theoretical predictions on low-dimensional model systems can
provide valuable understanding of the experimental realization
of solid helium confined to restricted geometries and also an
interpretation of supersolid signatures in general [13–16].

There is previous work done on the estimation of the
ground-state properties of strictly 2D solid 4He. Many years
ago, Whitlock et al [17] performed a systematic study of the
energetic and structural properties of this system based on
the Green’s function Monte Carlo approach (GFMC). More
recently, Gordillo et al [18] estimated the phase diagram
of two-dimensional 4He over a range of temperatures and
coverages using PIMC calculations. Also, various authors have
reported on the melting transition and dynamical properties
of helium films using variational and exact ground-state
methods [19, 20]. Interestingly, Vitali et al [20] have
investigated the existence of off-diagonal long range order
(ODLRO) in 2D solid 4He using the zero-temperature version
of PIMC adapted to the shadow wavefunction formalism, the
so-called shadow path integral ground-state method (SPIGS).
In the present paper, we provide comparison with respect
to the results reported in these previous works and present
new predictions as well. In particular, we report on direct
estimations of the superfluid fraction in 2D solid helium and
its dependence on the density of particles. We also analyze the
superfluid behavior of a quasi-2D crystal, i.e. an ensemble of
He atoms confined within a plane but allowed to explore the
out-of-plane direction locally, and assess its dependence on the
density of particles and degree of confinement. In the quasi-
2D case, we observe the presence of a superfluid signal which
coexists with the periodicity of the system.

The remainder of the paper is organized as follows. In
section 2, we summarize the basics of the DMC method
and describe the symmetrized trial wavefunction model used
throughout this work. Next, we report results for the
ground-state properties of 2D and quasi-2D solid helium.
Finally, we present some discussions and the conclusions in
section 4.

2. Method and trial wavefunction

We study the ground-state of 2D solid 4He by means of the
DMC method and Hamiltonian H = −h̄2/2mHe

∑N
i=1 ∇2

i +
∑N

i< j V (ri j ), with N being the number of particles. The
He–He atomic interaction is modeled with the semi-empirical
pairwise potential due to Aziz et al [21] (heretofore referred
to as Aziz II). The DMC method solves stochastically
the imaginary time (τ ) Schrödinger equation, providing
essentially exact results for the ground-state energy and
diagonal properties of bosonic systems within controllable
statistical errors. For τ → ∞, sets of configurations
(walkers) Ri ≡ {r1, . . . , rN } generated with DMC render
the probability distribution function (�0�), where �0 and �
are the ground-state wavefunction and trial wavefunction for
importance sampling, respectively. The short-time Green’s
function approximation that we use, and according to which
the walkers evolve, is accurate up to order (�τ)3; technical
parameters in the calculations, such as the mean population of
walkers (=400) and time step�τ (=5 ×10−4 K−1), have been
adjusted in order to eliminate possible bias in the total energy
per particle to less than 0.02 K/atom [22, 23].

Customarily, structural and energetic properties of solid
4He are explored with the Nosanow–Jastrow (NJ) trial
wavefunction

�NJ(r1, . . . , rN ) =
N∏

i< j

f (ri j)

N∏

i,I=1

g(ri I ) = ψJψL , (1)

where N is the number of particles (in this work we consider
commensurate crystals only so N is also equal to the number
of lattice sites), f (r) being a two-body correlation factor
accounting for atomic correlations and g(r) a one-body
localization factor which accounts for the periodicity in the
system by linking every particle to a particular lattice site of
a perfect crystal structure. The wavefunction �NJ leads to an
excellent description of the equation of state and structural
properties of quantum solids [24] but it cannot be used to
estimate properties which are directly related to the quantum
statistics. The reason for this is that�NJ is not symmetric upon
the exchange of particles and it misses the quantum statistics
of the system.

In a recent work [11], we have introduced a new type of
wavefunction, �SNJ, which reproduces crystalline order and
fulfils Bose–Einstein symmetry requirements simultaneously.
This model wavefunction is expressed as

�SNJ(r1, . . . , rN ) =
N∏

i< j

f (ri j)

N∏

J=1

(
N∑

i=1

g(ri J )

)

, (2)

where the product in the second term runs over lattice site
indexes. Compact and manageable analytical expressions for
the drift velocity and kinetic energy derive from equation (2),
so �SNJ is very well suited for implementation in DMC codes.
This model has proved to perform excellently in the description
of bulk solid 4He and also p-H2 in two dimensions [12]. The
key point in �SNJ is that the localization factor (second term in
equation (2)) is constructed in such a way that voids originated
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by multiple occupancy of the same site are penalized (this
feature will be illustrated in brief by a simple example).

A similar model, �LNJ, has been proposed recently by
Zhai and Wu [25], which is

�LNJ(r1, . . . , rN ) =
N∏

i< j

f (ri j)

N∏

i=1

(
N∑

J=1

g(ri J )

)

(3)

and where the product in the second term runs over particle
indexes. This wavefunction also fulfils quantum symmetry
requirements and is well suited for DMC purposes; however,
it does not account for accurate description of quantum
solids. We observe that when �LNJ is used for importance
sampling, solid order is not preserved but instead glassy-like
configurations are generated in the simulations [12]. In fact,
substantially better variational energies are obtained in 2D
solid hydrogen when using trial wavefunction �SNJ instead of
�LNJ (see table I in [12]). Similar variational outcomes are also
found in 2D solid 4He. For instance, at density ρ = 0.525 σ−2

(σ = 2.556 Å) we obtain E/NSNJ = 2.64(4)K (b = 1.1 σ and
a = 7.5 σ−2, see section 3.1) whereas E/NLNJ = 4.49(15) K
(b = 1.3 σ , a = 7.5 σ−2 and c = 4.0, c appearing in the
exponent of the McMillan factor, see section 3.1).

The poor variational quality of wavefunction �LNJ can be
understood in terms of the localization factor which, contrarily
to what is required to keep solid order, does not penalize
multiple occupancy of the same site. By multiple occupancy
of the same site here we mean a large probability of two
particles near the same site getting too close to one another
(that is as would be allowed by the Jastrow factor alone).
Differences between trial wavefunctions �SNJ and �LNJ can
be illustrated by a simple example of two particles in a one-
dimensional (1D) lattice. For the sake of simplicity, we assume
the distance between the atomic equilibrium positions to be
one, the parameter in the Gaussian factors (g(r)) a = 1/2
(in arbitrary units) and switch off the Jastrow factor. The
value of the square of wavefunctions �SNJ and �LNJ, |�sol|2,
in the case of pinning one of the particles in one lattice site
(at x = 0) and then moving the second particle towards it, is
plotted in figure 1. As one observes in there, the value of �LNJ

at points x = 1 and 0 (which correspond to particles placed
over different sites and particles placed over the same position,
respectively) is identical, whereas �SNJ(x = 1) > �SNJ(x =
0). Moreover, in the event of atomic overlap (x = 0) the
drift force 1/�(∂�/∂x) corresponding to wavefunction �SNJ

is much more repulsive than that of wavefunction�LNJ. In fact,
the curve obtained in the �LNJ case resembles that of a liquid
where the localizing factor can be thought of as a constant.
Also it must be noted that the value of �LNJ is maximum at
half way between 0 and 1, thus it will promote larger diffusion
of the atoms throughout the volume.

A symmetrized trial wavefunction that has been suc-
cessfully applied to the study of solid 4He is the shadow
wavefunction (SWF), proposed by Reatto et al more than
20 years ago [26, 27]. In the SWF formalism, an array of
subsidiary particles (shadow particles) is defined and made to
interact with the real atoms of the system; shadow particles
are correlated among them and their coordinates are integrated

0

Figure 1. |�LNJ|2 and |�SNJ|2 (Jastrow factor equal to unity)
functions in the simple case of two particles moving in one
dimension and with lattice sites separated by one arbitrary unity.

over the whole volume in such a way that bosonic symmetry
requirements are fulfilled by construction. At the variational
level the SWF has been shown to provide a very accurate
description of solid and liquid helium. Nevertheless, this
kind of trial wavefunction has never been used for importance
sampling in a DMC calculation. In spite of this, very recently
the SWF has been implemented within the path integral
ground-state (PIGS) formalism so that variational constraints,
in principle, have been removed. This formalism has been
used to explore solid 4He in two dimensions [20] and we will
comment on those results in section 3.2.

3. Results

3.1. 2D solid 4He

DMC simulations of 2D solid 4He in the triangular lattice
configuration have been carried out for N = 120 particles in
a (x, y) box where periodic boundary conditions are applied.
Correlation functions in equation (2) are chosen to be of
McMillan, f (r) = exp[−1/2(b/r)5], and Gaussian, g(r) =
exp[−1/2(ar 2)], form. Parameters b and a in factors f (r)
and g(r) have been optimized using variational Monte Carlo
(VMC) at a density of ρ = 0.480 σ−2 (σ = 2.556 Å), and
we obtain b = 1.1 σ and a = 7.5 σ−2 as best values (we
neglect their weak dependence on density). Size effects have
been corrected by assuming that atoms distribute uniformly
beyond half the length of the simulation box. Wavefunction
�SNJ already provides a good description of 2D solid 4He at
the variational level; for instance, at density ρ = 0.550 σ−2

we obtain a variational total energy per atom E/N of 3.29(3)K
which must compared with the SWF result [19] and variational
benchmark E/NSWF = 3.10(1) K, and the Nosanow–Jastrow
result E/NNJ = 3.18(2) K.

In figure 2, we plot DMC results for the total energy per
particle E/N as a function of density in solid and liquid 4He.
Results for the liquid phase are taken from [28]. Previous
Green’s function Monte Carlo (GFMC) estimations obtained
with a slightly different atomic pairwise interaction than used
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Figure 2. Energy per particle E/N of solid (S) and liquid (L) 4He in
two dimensions and zero temperature. Previous GFMC
calculations [17] obtained with the Aziz I pair potential are shown for
comparison (triangles). Results for the liquid phase are from [28].

here (referred to as Aziz I) [29] are included in the plot for
comparison [17]. In the solid phase, we fit our total energy
per atom results to the polynomial curve E/N = e0 + aρ +
bρ2 + cρ3 with e0 = −9.28(0.6) K, a = 87.41(3.4) Kσ 2,
b = −261.87(6.1) Kσ 4 and c = 258.91(3.7) Kσ 6, the
set of parameters which best reproduces them (statistical
uncertainties of the fit are expressed within the parentheses).
Once the energy function E(ρ) is known in the liquid and
solid phases, the corresponding melting and freezing densities,
namely ρl and ρs, can be estimated by means of the double-
tangent Maxwell construction. As a result, we obtain ρl =
0.492 σ−2 and ρs = 0.456 σ−2 which lie in between previous
GFMC [17] (ρGFMC

l = 0.471 σ−2, ρGFMC
s = 0.443 σ−2) and

variational SWF [19] (ρSWF
l = 0.522 σ−2, ρSWF

s = 0.475 σ−2)
estimations. The small discrepancy with respect to the GFMC
results can be understood in terms of the small differences in
the atomic pairwise potential used. For instance, it is well
known that the Aziz II potential provides atomic total energy
values around 0.1 K smaller than the Aziz I potential does [28].

A well-known drawback of the NJ model (equation (1))
is the impossibility of answering the fundamental question
of whether off-diagonal long range order (ODLRO) and/or
superfluid behavior may be manifest or not in quantum solids.
The SNJ model (equation (2)) correctly fulfils the Bose–
Einstein statistics and provides that information to some extent.
Quantitatively, ODLRO is measured by the condensate fraction
n0, which is estimated through the asymptotic behavior
of the one-body density matrix ρ(r)/ρ, namely n0 =
limr→∞ ρ(r)/ρ. The one-body matrix is an operator which
is non-diagonal in coordinate space and does not commute
with the Hamiltonian H ([H, ρ̂] �= 0) so that DMC output
for n0 is a mixed estimator, though bias stemming from the
trial wavefunction can be reduced significantly by means of
extrapolated estimator techniques [11, 12].

Vitali et al [20] have recently adapted the PIGS formalism
to the symmetrized SWF to investigate strictly 2D solid 4He
with it. Interestingly, the authors of this work conclude with
the non-existence of ODLRO in perfect 2D solid 4He. We will

Figure 3. Diffusion of the center of mass of 2D solid 4He in
imaginary time calculated at a series of densities near, below and
above the melting point. A small upwards shift has been applied to
the curves calculated at higher densities in order to appreciate details
of their slope.

comment on this finding in the next paragraph in the light of
our ρs/ρ results.

Differently to the estimation of n0, the superfluid
density of a bosonic system can be calculated exactly
using DMC (whereas this has not been possible yet
within the PIGS method) by extending the winding-number
technique, originally developed for PIMC calculations, to zero
temperature [30]. Specifically, the expression for the superfluid
fraction reads

ρs

ρ
= lim

τ→∞ α
(

Ds(τ )

τ

)

, (4)

where α = N/4D0 (2D case) with D0 = h̄2/2m, Ds(τ ) =
〈(RCM(τ ) − RCM(0))2〉 and RCM is the center of mass of the
particles in the plane. In figure 3, we plot the function Ds(τ )

calculated in the solid film at three different densities located
near, above and below the corresponding freezing density.
According to equation (4), the superfluid fraction ρs/ρ can be
estimated directly from the slope of Ds(τ ) at large imaginary
time. In all the studied cases we find that the superfluid fraction
of perfect 2D solid 4He is vanishingly small, or to be more
exact, it lies below our numerical threshold of ∼10−5. We
found analogous ρs/ρ results in the perfect three-dimensional
case [11]. As noted before, Vitali et al [20] have recently
studied perfect 2D solid 4He and concluded with the non-
existence of ODLRO in this system.

Very recently, we have studied strictly 2D solid H2 at
zero temperature with analogous approaches to the one used
here [12]. In 2D molecular hydrogen, we found that in
the regime of very low densities (negative pressure regime,
ρH2 < 0.390 σ−2) a finite superfluid fraction appears in
the crystal. Motivated by this result, and to understand the
relation between normal and superfluid densities, we have
carried out analogous calculations in 2D solid helium at stable
and metastable conditions (that is at densities above and below
ρl = 0.492 σ−2, respectively). It is worth noticing that the

4



J. Phys.: Condens. Matter 22 (2010) 165402 C Cazorla et al

DMC method has already been used to study ground-state
properties of metastable liquid 4He (overpressurized) [31]. In
the present case, we find a null value of ρs/ρ for any density
down to ρ = 0.390 σ−2 (see figure 3). This result seems
to be at odds with our previous findings in H2 since solid
helium possesses a larger degree of ‘quantumness’ compared
to solid hydrogen. A possible explanation for this is that the
density ρ = 0.390 σ−2 is still far from the spinodal point
of 2D solid helium. In fact, 4He is more compressible than
H2 (that is |∂P/∂V |He < |∂P/∂V |H2 ) so it is likely that the
critical density at which mechanical instabilities appear in the
first system is below that of the second. Also it must be
noted that very dilute solid helium films are far from being
realizable since the liquid phase is always energetically more
favorable at densities below ρ = 0.480 σ−2 (contrarily to what
occurs in 2D H2). In order to complete our study of low-
dimensional solid helium we have explored a system which can
be considered as somewhat more realistic, namely a quasi-2D
film.

3.2. Quasi-2D solid 4He

Very recent torsional-oscillator-like experiments performed in
the second layer of solid 4He adsorbed on graphite seem
to point towards the possible existence of a new kind of
supersolid phase [32]. Physical quantities such as the density
of particles, temperature and degree of corrugation with the
substrate, appear to have an important effect on the value
of this supersolid-like signal. Aimed at investigating the
origins of this low-dimensional supersolidity, which is totally
absent in strictly 2D solid 4He, we have studied an interesting
kind of simple model: a quasi-2D film. In this work, a
quasi-2D solid refers to a system of interacting 4He particles
with atomic displacements mostly confined to a plane but
which can spread over the z-axis due to zero-point oscillations
(see figure 4). This model grasps some essential features
of helium layers adsorbed on carbon-based surfaces like
graphene and graphite and could be relevant to describing
surface effects in bulk crystals. There are several advantages
in exploring this model system instead of performing more
realistic simulations of helium films adsorbed on carbon-based
surfaces [13–16]. First is the reduction of computational
cost which derives from ignoring explicit interactions with
the substrate and that allows us to explore the superfluid
properties of the model under a wide range of conditions.
Second, confinement in the z-direction can be tuned at will in
order to explore the relation between the superfluid fraction
ρs/ρ and the magnitude of the spatial out-plane fluctuations
〈�z2〉 = 〈(z − 〈z〉)2〉, which are related to the strength of the
helium film interactions with the substrate. Certainly, realistic
simulations of 4He films are necessary to fully understand
the origins of supersolid manifestations; however, here we
assume simplified interatomic interactions and atomic structure
(only the triangular lattice is considered) in exchange for
analyzing possible effects derived from the density of particles
and strength of the film–substrate interactions. The density
range in which we concentrate corresponds to that of an
incomplete first layer of solid helium adsorbed on graphite

Figure 4. Top and front views of strictly two-dimensional (left) and
quasi-2D (right) solid 4He at density ρ = 0.515 σ−2 and zero
temperature.

(that is 0.416 < ρ < 0.745 atom/σ 3) [16], so the effects
relating to the promotion of atoms to second or higher layers
are not considered.

Local fluctuations of the atomic positions in the z-
direction are achieved by imposing an external out-of-plane
harmonic potential trap Vc(z) ∝ (z − z0)

2, where z0 is
the equilibrium position of the film in that direction. The
Hamiltonian describing the quasi-2D system then is H =
T + VAziz II + Vc. The symmetrized trial wavefunction that
we use to describe the quasi-2D system is

�
q–2D
SNJ (r1, . . . , rN ) =

N∏

i< j

f (ri j)

N∏

J=1

(
N∑

i=1

g(r xy
i J )

)

×
N∏

i=1

exp
(− 1

2χz2
i

)
(5)

where r xy
i J is the projection of the vector ri − RJ over the

xy-plane, lattice vectors being {RJ = (a, b, 0)}, and the
value of parameter χ is explicitly related to the value of the
atomic spatial z-fluctuation by 〈�z2〉 = 1/2χ . The trial
wavefunction �q−2D

SNJ is equivalent to �SNJ in equation (2) but
with additional Gaussian localizing factors on the z-direction;
these localizing functions correspond to the exact Schrödinger
equation solution of a particle moving under the action of
the harmonic potential field Vc. Since the computational
technique used in this section is the DMC method and the
magnitude of the atomic z-spatial fluctuations analyzed is fairly
small, we have not attempted to construct explicit z-pairwise
correlations on the trial wavefunction. It must be noted that
these correlations are implicitly taken into account by the
Jastrow factor contained in �

q−2D
SNJ . Variational parameters

contained in expression (5) are set to the same value as used
in the study of strictly 2D solid 4He, with the exception of χ
which is varied according to the value of the spring constant
corresponding to the harmonic trap.

Next, we comment on the superfluid fraction results
obtained at several densities and z-confinement conditions. In
table 1, we report the dependence of the estimated superfluid
density fraction on the density of particles and the z-coordinate
fluctuation 〈�z2〉; in figure 5 we also show the evolution of
function Ds(τ ) on imaginary time at density ρ = 0.470 σ−2

and several atomic z-confinements. It is found that in the
〈�z2〉1/2 � 0.08 σ cases (not shown) the superfluid density

5
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Figure 5. Diffusion of the center of mass of quasi-2D solid 4He
calculated at the density ρ = 0.470 σ−2 and different values of the
atomic z-spatial fluctuations 〈�z2〉.

Table 1. Calculated superfluid fraction (expressed in %) of quasi-2D
solid 4He as a function of the density of particles and atomic spatial
z-fluctuation 〈�z2〉.

〈�z2〉 1
2 (σ )

ρ (σ−2) 0.18 0.22 0.35

0.470 0.003(1) 0.16(1) 6.85(1)
0.515 0.015(1) 0.010(1) 17.27(1)
0.600 0.0 0.009(1) 54.21(1)

is always vanishing, which turns out to be consistent with
what is found in the strictly 2D case. On the contrary,
when confinement in the z-direction is shallow, that is the
case where 〈�z2〉1/2 = 0.35 σ , the value of ρs/ρ is always
large and increases as the density of particles is raised (see
table 1). Results in the last column of table 1 appear to show a
competition between in-plane and out-plane interactions; as the
system is compressed, in-plane repulsive interactions become
progressively more important so that atoms prefer to spread
over the z-direction wherein potential confinement is mild
and they can move more freely. This has the overall effect
of enhancing the superfluid response of the system. In the
〈�z2〉1/2 = 0.18 and 0.22 σ cases, estimated ρs/ρ trends on
density are not that monotonic. At 〈�z2〉1/2 = 0.18 σ , we see
that ρs/ρ first increases when the density of particles is raised
whereas next it diminishes down to zero value under further
compression of the system. This behavior can be understood
in terms of the imposed z-axis confinement and atomic in-
plane interactions as well. When the density of particles is first
increased, atoms minimize their potential energy by spanning
over the z-axis in order to keep a distance from their neighbors
and move as freely as possible. The total space available
for the atoms then becomes larger so the effective density of
the system becomes smaller. The value of ρs/ρ consequently
increases. However, when density is further raised, out-plane
atomic excursions are not favorable any more because large
displacements along the z-direction require too much energy.
The value of ρs/ρ then decreases because atomic motion is

Figure 6. Radial pair-distribution function calculated on the
xy-plane of the quasi-2D film at different densities and fixed
amplitude of z-fluctuations 〈�z2〉1/2 = 0.35 σ . At density
ρ = 0.600 σ−2, the peaks and valleys of the gxy(r) function turn out
to be appreciably less pronounced than in the other cases considered.

tightly bound to the xy-plane and the effective density of the
system becomes large. The competition between in- and out-
plane interactions as modulated by the density of particles
is responsible for the enhancement/depletion of the observed
superfluid response of the system. At z-axis confinement
〈�z2〉1/2 = 0.22 σ , the trend of ρs/ρ with density exhibits
an intermediate behavior between that found in the 0.18 and
0.35 σ cases.

Regarding the stability of the quasi-2D solid film, we
note that in all the studied cases crystal-like order has been
found as witnessed by (i) the marked oscillating shape of the
radial pair-distribution functions gxy(r) obtained considering
the projection of the atomic positions on the xy-plane (see
figure 6), and (ii) the peaked pattern of the corresponding radial
averaged structure factors Sxy that scale with the number of
atoms (see figure 7). Nevertheless, in the 〈�z2〉1/2 = 0.35 σ
cases the film is likely to be a kind of glass system since the
values of the corresponding maximum Sxy(k) peaks are small
(see figure 7, lower panel) and the ρs/ρ values obtained are
quite large (last column in table 1) in comparison to the results
obtained upon tighter z-confinement. In fact, large superfluid
fractions (∼10–60%) have been estimated in metastable 4He
glass systems using the PIMC method [9]. Moreover, we
have calculated the total energy of a quasi-2D liquid system
at the same density and 〈�z2〉1/2 conditions as in the quasi-2D
solid system, using a Jastrow factor and Gaussian z-localizing
factors as importance sampling. It is found that in all the
〈�z2〉1/2 = 0.35 σ cases the quasi-2D solid film is metastable
(that is Eq−2D

J < Eq−2D
SNJ ) whereas it is stable in the rest

of 〈�z2〉1/2 and ρ cases (that is Eq−2D
SNJ < Eq−2D

J ). For
instance, at 〈�z2〉1/2 = 0.35 σ and ρ = 0.515 σ−2 we obtain
Eq−2D

J = 2.71(2) K/atom and Eq−2D
SNJ = 3.66(2) K/atom,

while at 〈�z2〉1/2 = 0.18 σ and the same density we obtain
Eq−2D

J = 16.29(3) K/atom and Eq−2D
SNJ = 15.81(2) K/atom.

This last outcome, in analogy with the 3D case, appears
to corroborate the hypothesis that the results obtained at
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Figure 7. Calculated radial averaged structure factor Sxy(k) of the
quasi-2D solid film at ρ = 0.515 σ−2 (k is in units of σ−1). Solid
lines represent calculations performed with N = 120 atoms, dashed
lines calculations performed with N = 224 atoms and triangles
correspond to results obtained for a quasi-2D liquid system
(N = 120 atoms). In the lower and upper panels, we show results
obtained for z-confinement 〈�z2〉1/2 = 0.35 σ and
〈�z2〉1/2 = 0.22 σ , respectively.

z-confinement 〈�z2〉1/2 = 0.35 σ correspond to quasi-2D
glass systems.

It is worth noticing that although particles in the quasi-
2D film are allowed to move in the z-direction, there is
not enough energy to excite the levels of the transverse
confinement and the system is kinematically two-dimensional.
The radial motion is frozen to zero-point oscillations and
the magnitude of z-fluctuations therefore is related to the
length 〈�z2〉1/2. We illustrate this in figure 8 where we
plot the atomic z-density profile calculated in the quasi-2D
solid film at ρ = 0.470 σ−2 and 〈�z2〉1/2 = 0.18 σ

using the pure estimators technique [23] and compare it with
the corresponding normalized Gaussian z-localizing factor
entering �q−2D

SNJ (case χ = 16 σ−2).

4. Conclusions

We have studied 2D and quasi-2D solid 4He at zero
temperature by means of the diffusion Monte Carlo method and
using the recently proposed symmetrized trial wavefunction
�SNJ as importance sampling. We have estimated the
superfluid density fraction of 2D solid 4He at T = 0 and
found that is negligible down to a density of ρ = 0.390 σ−2.
Importantly, by allowing the atoms to move along the z-
axis, we observe the appearance of a superfluid response
that coexists with the crystalline order of the system. The
magnitude of this response is shown to depend on the degree
of z-axis confinement and the density of particles. This
finding is valuable for the realization and interpretation of more
realistic simulations of helium layers adsorbed on carbon-
based surfaces, where the interactions with the substrate must
be taken into account accurately in order to make rigorous
judgments about the existence of superfluidity and/or ODLRO.
In view of the present results for the quasi-2D solid, it can
be suggested that a well-suited system in which to observe
a finite superfluid signal is the first layer of 4He on top of

Figure 8. Calculated atomic z-density profile (solid line) in the
quasi-2D solid system at ρ = 0.470 σ−2 and 〈�z2〉1/2 = 0.18 σ . For
comparison, we plot the corresponding normalized Gaussian
z-localizing factor (χ = 16 σ−2) entering trial wavefunction�q−2D

SNJ .
The distance is in units of σ .

graphene or graphite [13] which stabilizes in a triangular lattice
and possesses relatively small density. Work to verify this
hypothesis is in progress.
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