
J Low Temp Phys
DOI 10.1007/s10909-014-1238-x

The Limit of Mechanical Stability in Quantum
Crystals: A Diffusion Monte Carlo Study of Solid 4He

Claudio Cazorla · Jordi Boronat

Received: 11 August 2014 / Accepted: 26 September 2014
© Springer Science+Business Media New York 2014

Abstract We present a first-principles study of the energy and elastic properties of
solid helium at pressures below the range in which it is energetically stable. We find
that the limit of mechanical stability in hcp 4He is Ps = −33.8(1) bar, which lies
significantly below the spinodal pressure found in the liquid phase (i.e., −9.6 bar).
Furthermore, we show that the pressure variation of the transverse and longitudinal
sound velocities close to Ps does not follow a power law of the form ∝ (P − Ps)

γ , in
contrast to what is observed in the fluid.

Keywords Solid helium · Elasticity · Metastable

1 Introduction

In the last two decades, extensive theoretical and experimental works have focused on
the study of liquid helium at negative pressures and ultra-low temperatures [1,2]. The
equation of state of this material has been measured very accurately within the density
range in which it is stable, and extrapolated to the region of negative pressures [3,
4]. On the theoretical side, quantum Monte Carlo methods have allowed for precise
and explicit simulation of metastable liquid helium, producing results which are in
remarkably good agreement with experiments [5]. A quantity of central interest in
all these studies is the spinodal pressure Ps , that is, the pressure at which the bulk
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modulus, B, and sound velocity vanish and thus, the liquid becomes unstable against
long wavelength density fluctuations. In liquid 4He, Ps amounts to −9.6 bar, while in
liquid 3He to −3.2 bar [3,4].

Analogous studies performed in solid helium are almost non-existent in the litera-
ture [6,7]. At T = 0 K, solid helium becomes stable at pressures larger than ∼ 25 bar;
thus certainly, the realm of negative pressures lies well below such a threshold. Nev-
ertheless, analysis of the mechanical stability limit in helium crystals turns out to be a
topic of fundamental interest because of the extraordinary degree of quantumness of
these systems. In contrast to liquids, solids can sustain shear stresses, and because of
this ordinary fact, the definition of the spinodal point in crystals differs greatly from
the one given above. In the particular case of solid 4He, previous attempts to determine
Ps have been, to the best of our knowledge, only tentative [6,7].

The energy of a crystal under a homogeneous elastic deformation can be expressed
as

E(V, η) = E(V, 0) + 1

2
V

∑

i j

Ci jηiη j , (1)

where {Ci j } are the elastic constants, {ηi } a small strain deformation (both expressed
in Voigt notation), and E(V, 0) the energy of the undistorted equilibrium system. The
specific symmetry of a crystal determines the number of independent elastic constants
which are different from zero. In the case of hexagonal crystals (e.g., hcp 4He), these are
five: C11, C12, C13, C33, and C44. The conditions for mechanical stability in a crystal
follow from the requirement that upon a general strain deformation, the change in the
total energy must be positive. It can be shown that in hcp crystals subject to an external
pressure P these conditions readily are [8,9]

C44 − P > 0 [C1]
C11 − C12 − 2P > 0 [C2]
(C33 − P) (C11 + C12) − 2 (C13 + P)2 > 0 [C3]. (2)

The spinodal pressure, or limit of mechanical stability, in a crystal then is identified
with the point at which any of the three conditions above is violated. We must note
that the bulk modulus of an hexagonal crystal can be expressed as [10]

B = −V
d P

dV
= C33 (C11 + C12) − 2C2

13

C11 + C12 + 2C33 − 4C13
; (3)

thus, the conditions at which the bulk modulus vanishes in general must not coincide
with the corresponding limit of mechanical stability. This reasoning is in fact very
different from the usual Ps analysis performed in liquids.

In this article, we present a computational study of the energetic and elastic prop-
erties in solid 4He at pressures below ∼ 25 bar, based on the diffusion Monte Carlo
method. Our first-principles calculations allow us to determine with precision the limit
of mechanical stability in this crystal, which we estimate to be Ps = −33.8(1) bar
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(that is, much larger in absolute value than the one estimated for the fluid). More-
over, we show that, in contrast to liquid helium, the pressure variation of the sound
velocities near Ps does not follow a power law of the form ∝ (P − Ps)

γ with
γ = 1/3 [11].

The organization of this article is as follows. In the next section, we provide the
details of our computational method and calculations. In Sect. 3, we present our results
and comment on them. Finally, we summarize our main findings in Sect. 4.

2 Computational Details

In DMC, the time-dependent Schrödinger equation of a N -particle system is solved
stochastically by simulating the time evolution of the Green’s function propagator

e− i
h̄ Ĥ t in imaginary time τ ≡ i t

h̄ . In the τ → ∞ limit, sets of configurations (walkers)
{Ri ≡ r1, . . . , rN } render the probability distribution function �0�, where �0 is the
true ground-state wave function and � a guiding wave function used for importance
sampling. Within DMC, virtually exact results (i.e., subject to statistical uncertainties
only) can be obtained for the ground-state energy and related quantities [12,13].

We are interested in studying the ground-state of hcp 4He, which we assume to be

governed by the Hamiltonian H = − h̄2

2mHe

∑N
i=1 ∇2

i +∑N
i< j VHe−He(ri j ), where mHe

is the mass of a 4He atom and VHe−He the semi-empirical pairwise potential due to
Aziz [14]. It is worth noticing that the Aziz potential provides an excellent description
of the He–He interactions at low pressures [15,20].

The guiding wave function that we use in this study, �SNJ, reproduces both the crys-
tal ordering and Bose–Einstein symmetry. This model wave function was introduced
in Ref. [16] and it reads

�SNJ(r1, . . . , rN ) =
N∏

i< j

f (ri j )

N∏

J=1

(
N∑

i=1

g(ri J )

)
, (4)

where index J in the second product runs over the equilibrium lattice positions. In
previous works, we have demonstrated that �SNJ provides an excellent description
of the ground-state properties of bulk hcp 4He [16] and quantum solid films [17–
19]. Here, we adopt the correlation functions in Eq. (4) of the McMillan, f (r) =
exp

[−1/2 (b/r)5
]

, and Gaussian, g(r) = exp
[−1/2 (ar2)

]
, forms, and opti-

mize the corresponding parameters with variational Monte Carlo (VMC) [in order
to simulate the metastable solid, we performed one unique VMC optimization at
P ∼ 25 bar].

The technical parameters in our calculations were set in order to ensure convergence
of the total energy per particle to less than 0.02 K/atom. The value of the mean
population of walkers was 500 and the length of the imaginary time-step (�τ ) 5 ×
10−4 K−1. We used large simulation boxes containing 200 atoms in all the cases.
Statistics were accumulated over 105 DMC steps performed after system equilibration,

and the approximation used for the short-time Green’s function e−Ĥτ is accurate to
second order in τ [20,21].
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Fig. 1 Top Calculated equilibrium energy per particle expressed as a function of volume. The solid line
represents a polynomial fit to our results (see text). Results obtained in the liquid phase (from work [5]) are
shown for comparison. Bottom Calculated bulk modulus expressed as a function of volume. The region in
which B vanishes is augmentated on the inset (Color figure online)

The computational strategy that we followed to calculate the elastic constants {Ci j }
is the same as explained in Refs. [10,22,23]; thus, we address the interested reader to
them.

3 Results and Discussion

In Fig. 1, we show the calculated energy in solid helium expressed as a function of
volume (solid symbols). We optimized the c/a ratio in all the considered structures
and found that, within our statistical uncertainties, this quantity always amounts to
1.63. We fitted our results to the polynomial curve
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E(V, 0) = E0 + b

[(
V0

V

)
− 1

]2

+ c

[(
V0

V

)
− 1

]3

, (5)

and found as best parameters E0 = −5.978(5) K, V0 = 36.90(5) Å3, b = 34.38(5) K,
and c = 7.86(5) K. In comparison with the analogous energy curve obtained in the
liquid (see Fig. 1) [5], E(V, 0) displays larger slopes, which translates into larger
negative pressures, at volumes close to equilibrium (i.e., V0). In the same figure,
we enclose the bulk modulus, B(V ) = V d2 E/dV 2, that is calculated directly from
E(V, 0) [solid line]. The symbols which appear therein correspond to estimations
obtained with Eq. (3), thereby excellent consistency between our energy and Ci j

calculations is demonstrated. We find that the bulk modulus of helium vanishes at
volume VB = 53.00(5) Å3 and pressure PB = −34.1(1) bar. In what follows, we
present our analysis of the elastic properties and mechanical stability in solid 4He and
clarify whether VB and PB are meaningful physical quantities.

Figure 2 shows how the calculated elastic constants in solid helium change as a
function of volume. As expected, all five Ci j decrease with increasing volume. In
particular, C12 and C13 become zero at V = 48.32(5) [P = −32.8(1) bar] and
44.95(5) Å3 [−29.5(1) bar]. We performed power-law fits to our Ci j (V ) results in
order to render continuous elastic constant functions. By doing this, we were able
to represent the three conditions of mechanical stability in hcp helium [see Eq. (2)]
within the volume interval of interest. These results are enclosed in Fig. 3, where
it is shown that condition 3, i.e., [C3] in Eq. (2), is violated at Vs = 50.81(5) Å3

and Ps = −33.8(1) bar. Thus, we identify (Vs, Ps) with the limiting state at which
solid 4He remains mechanically stable. We note that these conditions, although not
identical, are very similar to (VB, PB), namely the state at which the bulk modulus
vanishes [as it now follows from Eqs. (2), (3)].

Interestingly, the mechanical stability limit that we predict for hcp 4He is well
below the spinodal pressure found in liquid helium (i.e., P liquid

s = −9.6 bar). In order
to understand the physical origins behind such a large difference, we analyzed the
volume expansion that both liquid and solid systems undergo from equilibrium to
their corresponding spinodal limits, namely �V/V0 ≡ (Vs − V0) /V0. We find that
�V/V0 actually amounts to ∼ 38 % in both liquid and solid phases (i.e., V solid

0 =
36.90(5), V solid

s = 50.81(5), and V liquid
0 = 45.75(5), V liquid

s = 63.25(5) Å3, where
the data for the liquid phase have been extracted from Ref. [5]). This last outcome
and the two equations of state shown in Fig. 1 appear to clarify the root of the large
|Psolid

s − P liquid
s | difference: before becoming mechanically unstable helium endures

a relative volume expansion that is more or less independent on the structure; the
accompanying energy increase in the crystal, however, is much larger than that in the
liquid, essentially because of the constrained motion of the atoms in the former, and
thus |Psolid

s | � |P liquid
s | follows.

Sound velocities in solids can be either longitudinal or transverse and depend on the
direction of propagation. In crystals with hexagonal symmetry, two main propagation
modes are identified, one along the c-axis and the other contained in the basal plane.
The relationships between the elastic constants and sound velocities in hcp crystals
are
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Fig. 2 Calculated elastic constants expressed as a function of volume. The solid lines are power-law fits
to our results (solid symbols) (Color figure online)

vL = (C33/ρ)1/2

vT 1 = vT 2 = (C44/ρ)1/2 (6)

along the c-axis, and

vL = (C11/ρ)1/2

vT 1 =
(

C11 − C12

2ρ

)1/2

vT 2 = (C44/ρ)1/2 (7)
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Fig. 3 Conditions of mechanical stability [see Eq. (2)] expressed as a function of volume. The region in
which condition 3 is not accomplished is augmentated on the inset (Color figure online)

in the basal plane [10]. In Fig. 4, we plot the six c-axis and basal sound velocities
calculated in solid helium as a function of pressure (some of them are coincident)
together with an appropriate average, vD [10]. We observe that none of the sound
velocities vanishes at the spinodal pressure Ps (marked in red in the figure), as it
was already expected from Eqs. (2), (6), (7). Moreover, in Fig. 5, we plot the angular
dependence of the (now pseudo) longitudinal and transverse sound velocities [24,25]
calculated in the mechanical stability limit; there, φ represents the angle between the
sound wave direction and the c-axis in the crystal (i.e., φ = 0◦, 90◦ corresponds to
the c-axis and basal plane cases, respectively). It is observed that despite vL reaches
a minimum at φ = 48.3◦, none of the three sound velocities vanishes at Ps . We
also find that all sound velocities are larger than zero at PB , the pressure at which
the bulk modulus vanishes, independently of φ (not shown in the figure). From the
present analysis, it is deduced that any of the normal modes that should vanish at Ps is
non-acoustic. Unfortunately, we are not able to identify those modes with the present
approach.

Recently, it has been suggested that the variation of the sound velocities near the
spinodal density in hcp 4He could follow a power law of the form ∝ (P − Ps)

γ , where
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Fig. 5 Angular dependence of the calculated sound velocities in hcp 4He at the limit of mechanical stability
(see Refs. [24,25]) (Color figure online)

γ = 1/3, in analogy to what is observed in the liquid phase [6,7]. However, in light of
the results presented in Figs. 4 and 5, such hypotheses must be rejected because none
of the sound velocities becomes zero at Ps . Furthermore, we performed analytical fits
of the form vL ,T (P) = a + b (P − Ps)

β to our results and found that parameter β

was always different from 1/3. For instance, in the vD case, we found β = 0.55(2)

as the optimal value. Therefore, we must conclude that propagation of sound waves
in helium crystals at the verge of mechanical instability differs radically from that in
liquid helium under similar conditions.
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4 Conclusions

We have presented a rigorous and precise computational study of the energy and elastic
properties of solid helium at conditions in which it is metastable. We have determined
the limit of mechanical stability in this crystal, i.e., Ps = −33.8(1) bar, and the
variation of the sound velocities at pressures close to it. Overall, we demonstrated
that solid and liquid helium behave radically different in the vicinity of their spinodal
limits.
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